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G enetic fusion of a fluorescent pro-
tein to a target protein for specific
labeling in living cells has been

widely used to investigate the intracellular
trafficking, conformational change, and oli-
gomerization of proteins (1). However, the
use of fluorescent proteins with a consider-
able size (�27 kDa for GFP) may give artifac-
tual results, for example, formation of aggre-
gates or impairment of protein function (2,
3). In addition, for measurements of the oli-
gomerization of cell surface proteins, for ex-
ample, receptors, by nonradiative energy
transfer between fluorophores, post-
translational labeling methods with smaller
fluorophores are superior to fluorescent pro-
teins because of facile control of the
donor�acceptor ratio (4, 5). Another advan-
tage of post-translational labeling is that
cell-surface-specific labeling is possible by
use of membrane-impermeable fluorescent
probes to study, for example, the membrane
trafficking of receptors (6). Therefore, an in-
creasing number of methods using pairs of
much smaller genetically encodable tags
and synthetic probes targeting the tags have
emerged to specifically label proteins in liv-
ing cells (see reviews (7, 8)). Most of these
tag�probe labeling methods are based on
well-known specific interactions or reac-
tions, such as the formation of complexes
between peptides and metal ions (9–11) or
formation of covalent bonds by enzymatic
reactions (4, 5, 12, 13), although tag se-

quences have been identified or optimized
by screening (14–16). Despite an expanding
repertoire of labeling techniques, each
method has limitations, such as a long la-
beling time, low labeling specificity, little
color variation, and high toxicity. For ex-
ample, the HisZiFit probe and hexahistidine
tag (10) combine to make a satisfactory
small tag�probe system (�1.6 kDa), but
currently only one fluorophore is avail-
able and the presence of free zinc ions
(1�10 �M) is required. On the other hand,
for labeling with the ACP tag (4, 5), several
fluorophores with different colors are avail-
able, but the labeling time for the enzymatic
reaction is relatively long (typically 20�40
min) and large excess amounts of sub-
strates (5 �M) are required. In addition, the
development of new labeling methods or-
thogonal to preexisting principles is impor-
tant for multicolor labeling of different
proteins.

Here we show that a heterodimeric coiled
coil is useful for the rapid, nontoxic, and
specific labeling of cell-surface proteins in
living cells without the need for particular
metals or enzymatic reactions. The het-
erodimeric coiled-coil peptides K3
(KIAALKE)3, K4 (KIAALKE)4, E3 (EIAALEK)3,
and E4 (EIAALEK)4 originally designed by
Litowski and Hodges (17), were tested as
tag and probe. These peptides have net
positive (�3 for K3 and �4 for K4) or nega-
tive (�3 for E3 and �4 for E4) charges and
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ABSTRACT The specific labeling of proteins
in living cells using a genetically encodable tag
and a small synthetic probe targeting the tag has
been craved as an alternative to widely used
larger fluorescent proteins. We describe a rapid
method with a small tag (21 amino acids) for the
fluorescence labeling of cell-surface receptors
using a high affinity coiled-coil formation with-
out metals or enzymes. The peptide probes K3
(KIAALKE)3 and K4 (KIAALKE)4 labeled with a
fluorophore specifically stained the surface-
exposed tag sequence E3 (EIAALEK)3 attached
to the N-terminus of the mouse-derived prosta-
glandin EP3� receptor in living cells (Kd � 64
and 6 nM for K3 and K4, respectively). The label-
ing was quick (�1 min), nontoxic, and available
even in culture medium without affecting recep-
tor function. As an application of this tractable
method, the agonist-induced internalization of
the human-derived �2-adrenergic receptor and
epidermal growth factor receptor was success-
fully visualized.
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therefore are expected to be membrane-
impermeable. Electrostatic attraction be-
tween K and E coils drives the formation of
a heterodimer whereas K�K or E�E repul-
sion inhibits the formation of homodimers
(Supplementary Figure 1). The heterodimer
composed of E3 and K3 is completely
�-helical and assumes a compact coiled-
coil structure, as revealed by NMR spectros-
copy (18). The size of the heterodimers
(K3�E3, K3�E4, E3�K3, and E3�K4) la-
beled by a fluorophore is 5�6 kDa, which
is significantly smaller than that of fluores-
cent proteins (�27 kDa). K3 and E3 were se-
lected for tag sequences because the longer
K4 and E4 are known to self-associate at

concentrations of 300�400 �M in aque-
ous solution (17) and possibly promote self-
association of the tagged proteins on cell
membranes where the proteins are locally
concentrated. A concentration of 300 �M
corresponds to a high expression level of
�1000 receptors/�m2, assuming a local
thickness of 5 Å on the membrane surface.
In contrast, K3 and E3 do not form ho-
modimers even at 300 �M (17). E3, E4, K3,
and K4 were labeled at the N-terminus with
the fluorophore tetramethylrhodamine
(TMR), Alexa Fluor 488, or fluorescein (FL).
As target proteins, we used the mouse-
derived prostaglandin E2 receptor EP3�

subtype (EP3�R) (19), the human-derived

�2-adrenergic receptor (�2AR) (20), and the
rat-derived epidermal growth factor receptor
(EGFR) (21) as typical receptors.

The K3 or E3 tag sequence was attached
to the N-terminus of EP3�R, which is ex-
posed to the extracellular side, and to moni-
tor the expression and localization of the re-
ceptor, EYFP was fused to the C-terminus
(K3-EP3�R-EYFP and E3-EP3�R-EYFP). The
tagged receptors were transiently expressed
in Chinese hamster ovary (CHO) cells. TMR-
labeled probes (20 nM) dissolved in the cul-
ture medium containing 10% serum were
added (the TMR-E3 and TMR-E4 probes for
the K3-tagged receptor and the TMR-K3 and
TMR-K4 probes for the E3-tagged receptor).
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Figure 1. Labeling of membrane receptors in living cells by the coiled-coil tag. a)– c) Examination of tag�probe combinations. a) Tetra-
methylrhodamine-(EIAALEK)3 (TMR-E3) or tetramethylrhodamine-(EIAALEK)4 (TMR-E4) added to cells expressing (KIAALKE)3-prostaglandin
E2 receptor EP3� subtype-EYFP (K3-EP3�R-EYFP). b) Tetramethylrhodamine-(KIAALKE)3 (TMR-K3) or tetramethylrhodamine-(KIAALKE)3 (TMR-K4)
added to Chinese hamster ovary (CHO) cells expressing (EIAALEK)3-prostaglandin E2 receptor EP3� subtype-EYFP (E3-EP3�R-EYFP). Relative
fluorescence intensity of TMR normalized to that of EYFP is shown below. The intensity for the TMR-K4/E3-EP3�R-EYFP combination was set to
100%. c) Labeling specificity using E3-tagged receptors and the TMR-K4 probe. Fluorescence intensity of TMR relative to that of untransfected
cells (background) is shown below (contrast). The TMR-probes (20 nM) dissolved in culture medium containing 10% serum were incubated with
cells for 5 min. The cells were rinsed once with the medium and observed by confocal microscopy. Differential interference contrast (DIC) im-
ages are also shown. d) Labeling kinetics for the TMR-K4 (20 nM)-E3-EP3�R-EYFP pair. Relative fluorescence intensities of EYFP and TMR on
cell membranes after addition of the probe (0 s) are shown (n � 5). Inset: confocal images for EYFP (upper) and TMR (lower). e) Increase in TMR
fluorescence intensity (FI) for TMR-K3 (Œ) and TMR-K4 (�) on cell membranes as a function of probe concentration [P]. Error bars indicate
standard error of the mean (n � 10). The dissociation constant Kd (�standard error of the mean) was obtained from the fitting, FI � k[P]/([P] �
Kd), where k is a constant proportional to the density of labeled receptor. f) Colabeling of (EIAALEK)3-prostaglandin E2 receptor EP3� subtype
(E3-EP3�R) by TMR-K4 and Alexa Fluor 488-K4. TMR-K4 and Alexa Fluor 488-K4 (25 nM each) were coincubated in the medium with the CHO
cells. The cells were rinsed and observed.
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The cells were rinsed with the medium and
imaged by confocal microscopy. When the
TMR-E probes were added to cells express-
ing the K3-tagged receptors, no significant
labeling was observed (Figure 1, panel a).
Even at a higher concentration of the TMR-E
probes (300 nM), no improvement in label-
ing was observed (data not shown), indicat-
ing that the poor labeling was not due to a
reduced dissociation constant caused by
the membrane environment of the K3 pep-
tide. All of the K3-tagged N-termini of the re-
ceptors might not assume the correct mem-
brane topology. In contrast, addition of the
TMR-K probes to cells expressing the E3-
tagged receptors stained receptors only on

cell membranes because of the mem-
brane impermeability of the probes,
although the receptors were also
present in the cell interior (Figure 1,
panels b and c). Compared to the
K-tag/E-probe combinations, the rela-
tive fluorescence intensity of TMR was
increased by 5- and 12.5-fold for the
K3 and K4 probes, respectively. Sev-
eral control experiments to demon-
strate the specificity were carried out
under the same experimental settings
(Figure 1, panel c). No significant non-
specific staining for TMR-K4 or TMR-K3
(data not shown) was present in un-
transfected cells and cells expressing
K3-tagged receptors. The latter obser-
vation indicates (1) that the binding of
the K4 probe to the cells expressing
the E3-tagged receptors was not be-
cause an increase in overall protein
density by transfection increased non-
specific probe stickiness to the cell
membranes and (2) that the het-
erodimer formation is sequence-
specific. Similary, TMR-E4 or TMR-E3
(data not shown) did not bind to cells
expressing E3-tagged receptors. From
these control experiments, the signal-
to-background contrast was esti-
mated to be 40�90.

Kinetic and equilibrium studies
demonstrated that the binding of the K
probes to the E3-tagged receptor was rapid
and strong. Fluorescence intensities of EYFP
and TMR on cell membranes were moni-
tored as a function of time after addition of
the TMR-K4 probe (Figure 1, panel d). The la-
beling was completed within 1 min. Next,
to evaluate the strength of the binding be-
tween the tag and the probe, cells express-
ing the E3-tagged receptors were titrated
with TMR-K4 (Supplementary Figure 2) and
TMR-K3 (data not shown) in the concentra-
tion range 1.5�200 nM. At higher probe
concentrations, high background fluores-
cence hampered a precise determination of
fluorescence intensity on cell membranes.

Apparent dissociation constants were deter-
mined from concentration-dependent in-
creases in TMR fluorescence intensity on
cell membranes (Figure 1, panel e, Kd � 64
	 31 nM for TMR-K3; Kd � 6 	 2 nM for
TMR-K4). The dissociation constant for
TMR-K3 and the E3 tag was similar to that
for the corresponding K3 and E3 peptides
measured in buffer (�70 nM) (17). The
stronger labeling with the TMR-K4 probe en-
abled efficient visualization of the receptor
even at a low concentration of 20 nM
(Figure 1, panel b). After the titration, the
probes were continuously washed out with
the medium at a flow rate of 1 mL min�1

(Supplementary Figure 3). Even after a
50-mL washout, �80% of TMR-K4 remained
attached to the E3 tag. On the other hand,
significant amounts of TMR-K3 could be
washed out from the tag, suggesting that
the probe is suitable for reversible labeling
(vide infra).

To confirm the versatileness of this label-
ing method, different cells and fluorescent
probes were also used. The E3-tagged re-
ceptors on cell membranes could be specif-
ically colabeled with TMR-K4 and Alexa Fluor
488-labeled K4 (Figure 1, panel f). E3-tagged
receptors expressed in PC12 cells were
also specifically labeled by TMR-K4 (Supple-
mentary Figure 4). Thus, our simple method
with a high sensitivity is superior to reported
labeling methods that typically require com-
binations of probes at much higher concen-
trations, metals, enzymes, and/or washing
reagents (15).

For the practical use of this labeling
method, the following points should be
checked. First, TMR-K-labeled E3-EP3�R
should maintain receptor activity. Second,
the probes should be nontoxic. Third, the
probes should be chemically stable in solu-
tion. The activity of the labeled receptor was
examined based on the agonist-dependent
influx of Ca2� using the Ca2�-sensitive
probe Fura2, imaged by an epifluorescence
microscope. The E3-tagged EP3� receptor
without EYFP (E3-EP3�) was transiently ex-
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Figure 2. Ca2� imaging of CHO cells expressing E3-
EP3�R labeled with TMR-K4 (60 nM). a) Epifluores-
cence images for TMR-K4 and Fura2 (ratio excited at
340/380 nm). Local Ca2� concentrations are rep-
resented by red (high) and blue (low) colors. b) Time
course of change in the Fura2 fluorescence ratio for
TMR-K4-positive cells (red line) and TMR-K4-
negative cells (blue line). Error bars indicate the
range (n � 5). The EP3 agonist sulprostone (final
concentration, 3 �M) was added at the time shown
by the arrow. A statistical analysis of the ratios at
30 s after addition of the agonist was performed us-
ing the Wilcoxon rank sum test (two-tailed).
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pressed in CHO cells and labeled with the
TMR-K4 probe at 60 nM, a concentration at
which more than 90% of the tagged recep-
tors at the cell surface should be labeled by
the probe (Figure 1, panel e). Only in cells
expressing E3-EP3�R that had been labeled
by TMR-K4 did the intracellular Ca2� level in-
crease after addition of the EP3R agonist
sulprostone (Figure 2), verifying that the la-
beling did not impair the function of EP3�R.
The toxicity of the probes was examined by
the WST-1 assay. Excess concentrations of
TMR-K3 and TMR-K4 (10 �M) showed no
significant toxicity against CHO cells even af-
ter a 20 h incubation (Supplementary
Figure 5). The stability of the probes was
also examined. In aqueous solution at 4 °C,
no degradation of TMR-K3 and TMR-K4 was
observed for at least 1 month (Supplemen-
tary Figure 6). Thus, we found that the E3 tag
and the K probes are a suitable combina-
tion for the specific labeling of cell-surface
receptors. Notably, labeling using the K4
probe is quick (�1 min), sensitive (tens of
nanomolars), and does not impair receptor
function.

As an application of this labeling method,
the internalization of �2AR in response to re-
ceptor stimulation (20) was visualized. The
E3 tag sequence and EYFP were attached to
the N-terminus and the C-terminus of the re-
ceptor, respectively (E3-�2AR-EYFP). It was
confirmed that the TMR-K4 probe selectively
stained receptors on cell membranes
(Figure 3, panel a). After addition of the
�2AR agonist isoproterenol, the internaliza-

tion of cell-surface receptors was clearly vi-
sualized in the TMR image, indicating that
the labeling, again, did not affect receptor
activity (Figure 3, panel a), whereas in the
absence of isoproterenol, no significant in-
ternalization was observed (Figure 3,
panel b). It was difficult to distinguish the in-
ternalized receptors from the original intra-
cellular receptors in the EYFP image
(Figure 3, panel a), demonstrating an advan-
tage of the coiled-coil labeling over fluores-
cent proteins. Furthermore, the quickness
and reversibility of the coiled-coil labeling
enables a pulse-chase labeling (Figure 3,
panel c). After the agonist stimulation of the
TMR-K3-labeled E3-�2AR, the receptors on
the cell surface (receptors that had not been
internalized and newly externalized recep-
tors) could be labeled by the second probe
FL-K4 after the washout of TMR-K3. The ab-
sence of TMR fluorescence on the cell sur-
face indicates the reversibility of the label-
ing. The ligand-induced internalization
could be also visualized for the E3-tagged
epidermal growth factor receptor (EGFR), in-
dicating the versatility of this labeling
method (Supplementary Figure 7). Thus,
coiled-coil labeling is an attractive tool for
screening of ligands based on receptor
internalization.

A major bottleneck to the development
of a practical tag–probe labeling method is
intractability, for example, complicated la-
beling procedures and considerable non-
specific labeling. Our coiled-coil tag�probe
labeling system for surface receptors in

living cells is unique in using
simple peptide�peptide interac-
tion without additional compo-
nents such as metals or enzymes.
Notably, the combination of the
E3 tag and the K4 probe was
found to be highly tractable:
quick, nontoxic, sensitive, and
available even in culture medium.
Furthermore, the reversibility of
the labeling using the K3 probe

enabled discrimination between the inter-
nalized and the cell-surface receptors,
whereas the K4 probe is suitable for long-
time observation. Another benefit is that di-
verse fluorophores or other synthetic mol-
ecules can be easily attached to the probe
by conventional peptide synthesis proce-
dures. This promising method should have
diverse applications, such as in the detec-
tion of receptor internalization and
oligomerization.

METHODS
Cell Culture and Transient Expression of EP3�R

Mutants. CHO cells were maintained in alpha
modification Eagle’s medium (�MEM) with 10%
heat-inactivated fetal bovine serum in 5% CO2 at
37 °C. For transfection using LipofectAMINE and
PLUS reagents (Invitrogen), 1 
 105 cells in a 35
mm glass bottom dish were incubated with a
transfection mixture composed of 0.3 �g of DNA,
2 �L of LipofectAMINE, and 3 �L of PLUS reagent
for 3 h.

Examination of Tag�Probe Combination. Cells
expressing the tag-labeled EP3�R were imaged
24�48 h after transfection. Five minutes after the
incubation with probes in 1 mL of �MEM (pH 7.4)
with 10% serum and 10 mM 2-[4-(2-hydroxyethyl)-
1-piperadinyl] ethansulfonic acid (HEPES), the
cells were rinsed once with the medium and ob-
served by confocal microscopy (Zeiss LSM Pascal).
Green (EYFP and Alexa 488) and red (TMR) chan-
nels were images excited by 488 and 543 nm la-
sers, and detected through BP 505�530 nm and
LP 560 emission filters, respectively. For the mea-
surement of labeling kinetics, probes dissolved in
medium (1 mL) were added to cells immersed in
medium (1 mL) to give a concentration of 20 nM.
In the titration experiments, a Nikon C1 confocal
microscope equipped with a temperature and CO2

controlled stage was used (green and red chan-
nels were excited by 488 and 561 nm lasers, de-
tected through BP 505�530 nm and BP 560�640
emission filters, respectively).

Intracellular Ca2� Imaging. Cells expressing the
tag-labeled EP3�R were rinsed with �MEM with
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Figure 3. Internalization of �2-adrenergic receptor (�2AR) in response to receptor stimulation. a) Confocal
images of CHO cells transiently expressing E3-�2AR-EYFP. The cells were labeled with 20 nM TMR-K4 (left)
and then incubated with 10 �M isoproterenol for 30 min (right). b) Negative control in the absence of
isoproterenol. c) Pulse-chase experiment. CHO cells expressing E3-�2AR were labeled with TMR-K3 (60 nM)
for 2 min, then incubated with isoproterenol (10 �M) for 5 min. After the cells were washed with PBS, 20
nM fluorescein-K4 (FL-K4) was added and the cells were observed. The TMR and FL images are merged in
the lower right panel.
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10% serum containing 0.5 �M indomethacin and
0.5 mM probenecid (pH 7.4) and then incubated
for 30 min with 10 mM Fura 2 a.m. (Dojindo) at
37 °C. After the incubation, the medium was re-
placed with 1 mL of physiological saline solution
(135 mM NaCl, 10 mM HEPES, 5.5 mM glucose,
5 mM KCl, and 1 mM MgCl2, pH7.4) containing
2 mM Ca2� and 60 nM TMR-K4 probe. Fluores-
cence of Fura 2 was obtained at 510 nm with exci-
tation wavelengths of 340 nm/380 nm. Sulpros-
tone (6 �M, 1 mL) was added to give a final
concentration of 3 �M.

Internalization of Receptors. Cells expressing E3-
�2AR-EYFP were incubated with 1 mL of �MEM
(containing 1% 1 M HEPES, pH7.4) with 10% se-
rum containing 20 nM TMR-K4. Isoproteronol
(20 �M, 1 mL) was added to give a final concen-
tration of 10 �M. After incubation for 30 min at RT,
the confocal image was obtained. In the pulse-
chase experiment, cells expressing E3-�2AR were
labeled with TMR-K3 (60 nM) in F-12 medium (pH
7.4) for 2 min, then incubated with isoproterenol
(10 �M) for 5 min at 37 °C. After the cells were
washed with PBS (10 times), FL-K3 (20 nM) was
added and the cells were observed.

Peptide Synthesis and Construction of Plasmids.
See Supporting Information for details.
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